

GOVERNMENT DEGREE COLLEGE, CHODAVARAM

ANAKAPALLI DISTRICT

PAPER PUBLICATIONS

1.

Journal of Inorganic and Organometallic Polymers and Materials https://doi.org/10.1007/s10904-020-01773-6

Evaluation of Structural, Micro-structural, Vibrational and Elastic Properties of Ni-Cu-Zn Nanoferrites: Role of Dopant Cu²⁺ at Constant 0.1 mol% in Ni-Zn Spinel Structure

K. S. Ramakrishna¹ · Ch. Srinivas² · S. A. V. Prasad² · E. Ranjith Kumar³® · K. Ramachandra Rao⁴ · C. L. Prajapat^{5,6} · T. V. Chandrasekhara Rao⁵ · Sher Singh Meena⁷ · D. L. Sastry⁸

Received: 9 August 2020 / Accepted: 26 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Structural and elastic properties have been investigated for a series of heat treated Ni₄Cu_{0.1}Zn_{0.9-x}Fe₂O₄ (x = 0.5, 0.6, 0.7) nanoferrite powders which were synthesized using co-precipitation method. Rietveld refinement patterns revealed the spinel phase belonging to fd3m space group. Lattice parameters of the heat treated samples are in the range of (8.453–8.417 Å). As the substitution level of Ni²⁺ increased, the lattice parameter decreased in the samples sintered at 200 °C, but it was randomly varied in the in the samples sintered at 500 °C. The average crystallite size (4.1–10.9 nm) estimated from XRD as well as average particle size (5.5–11.3 nm) estimated from FE-SEM were found to be increased with the increase of Ni²⁺ ion concentration in sintered ferrite samples. Sintering process was promoting the growth of nanoparticle size. The spherical nature of ferrite nanoparticles was evident from the FE-SEM micrographs. The vibrational bands observed in the FTIR spectra confirm the cubic spinel phase of ferrite systems. The variation of vibrational bands seems to be dependent on the particular metal ion occupying the spinel structure rather than the changes in bond lengths of Fe³⁺–O²⁻ ion complexes. The present values of elastic moduli revealed the mechanical hardness of present heat treated ferrite samples. Interestingly, the elastic moduli depend upon the variation of both inter-atomic distances as well as cation redistribution. The identical value of Poisson's ratio (0.35) is an authentication of isotropic behaviour of the present ferrite systems.

Keywords Ferrite nanoparticles · Cation redistribution · Vibrational frequencies · Elastic moduli · Lattice energy

2

Access through your institution

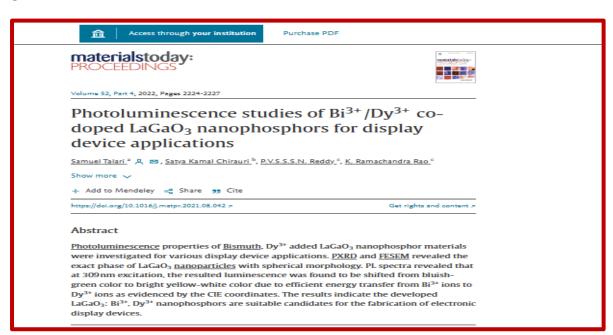
Purchase PDF

Journal of Alloys and Compounds

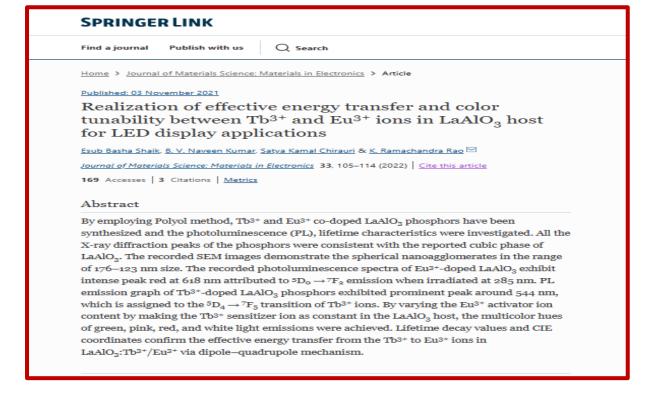
Volume 852, 25 January 2021, 156967

Influence of Ge4+ doping on photo- and electroluminescence properties of ZnGa2O4

Ch. Satya Kamal ^a, R.K. Mishra ^c, K. Ramachandra Rao ^b 🙇 💌 , Bal Govind Vats ^d, M.V. Pimple ^e, V. Sudarsan c 🙊 🖂 , R.K. Vatsa c


+ Add to Mendeley 🧠 Share 🤧 Cite

https://doi.org/10.1016/j.jallcom.2020.156967 >


Get rights and content a

Abstract

 $\underline{Nanocrystalline}\ ZnGa_{2}O_{4}\ samples\ doped\ with\ varying\ concentrations\ of\ Ge^{4+}\underline{ions\ were}$ prepared and their photo- and electroluminescence properties were investigated in detail before and after annealing at 900° C. X-ray diffraction (XRD) studies confirmed that Ge^{4} doping even to a level of $0.5\,at.\%$ at the expense of Ga^{3+} in $ZnGa_2O_4$, leads to incorporation of significant extent Ga³⁺ ions (~29%) at Zn²⁺ site (tetrahedral site) in ZnGa₂O₄ lattice thereby increasing relative extent of distorted gallium-oxygen (GaOx) structural units. XRD, UV-Visible optical reflectance and lifetime measurements confirmed that a maximum of 0.65 at.% Ge^{4+} is doped in nanocrystalline $ZnGa_2O_4$. Observed blue shift in photoluminescence maximum and decrease in <u>line width</u> with Ge^{4+} doping is explained based on increased electro-negativity of Ge4+ compared to Ga3+ and lack of formation of oxygen vacancies particularly for 900°C annealed samples. Lack of oxygen vacancies in Ge^{4+} doped annealed samples facilitates <u>selective excitation</u> of regular GaO_6 and GaO_x structural units, upon application of AC voltages, leading to around 50% reduction in <u>line</u> width of electroluminescence peak from doped sample compared to undoped one. Observed variation in electroluminescence properties between doped and undoped samples have been understood based on difference in nature of defects generated in the

4.

ARTICLE 2022, vol. 9(1), No. 20229107 DOI: 10.15826/chimt

Bright blue emissions on UV-excitation of LaBO₃ (B=In, Ga, Al) perovskite structured phosphors for commercial solid-state lighting applications

B.V. Naveen Kumar $^{\rm ab}$, T. Samuel $^{\rm c}$, Samatha Bevara $^{\rm d}$, K. Ramachandra Rao $^{\rm e}$, Satya Kamal Chirauri e* @

- Department of Physics, Acharya Nagarjuna University, Guntur, India
 Shri Vishnu College of Engineering for Women(A), Bhimavaram, India
 GMR Institute of Technology, Rajam, Andhra Pradesh, India
 Chemistry Division, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra
 Pradesh, India
 Crystal Growth & Nanoscience Research Center, Government College (A), Rajahmundry, India

Corresponding author: satyakamal.ch@gmail.com

This article belongs to the regular issue

2022, The Authors. This article is published in open access form under the terms an commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

Bright blue photoluminescence (PL) was obtained from Bi^{3+} -activated LaBO $_3$ (B = In, Ga, Al) perovskite nanophosphors. A cost-effective and low-temperature chemical route was employed for preparing Bi^{3+} doped LaBO $_3$ (B=In, Ga, Al) which were then annealed at 1000 °C. The phase formation, morphological studies and luminescent properties of the as-prepared samples were performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and optical absorption spectroscopy. Comparison of emission intensities, lifetime studies, energy band gaps and color purity of all samples (pure and Bi³⁺ doped) were investigated for promising applications in UV light-emitting diodes, variable frequency drive (VFD), field emission display (FED), and other photoelectric fields.

Keywords

perovskites photoluminescence phosphor quenching solid-state lightning

Received: 08.07.2021 Revised: 02.01.2022 Accepted: 04.03.2022 Available online: 11.03.2022

6.

LUMINESCENCE

RESEARCH ARTICLE

Tunable luminescence from Bi³⁺ sensitized La₂Zr₂O₇:Eu³⁺ red nanophosphors for display applications

Basina Veera Naveen Kumar, Kankanala Venkata Rao, Esub Basha Shaik, Yerramala Nirmal Rajeev, Kokkirapati Ramachandra Rao, Sandhya Cole 🖾

First published: 05 September 2022 | https://doi.org/10.1002/bio.4378 | Citations: 1

Read the full text >

Abstract

Bismuth ion (Bi³⁺) sensitized, europium ion (Eu³⁺) activated La₂Zr₂O₇ nanophosphors are prepared successfully by simple wet chemical method. Strong blue emission of singly doped $\rm La_2Zr_2O_7$ with $\rm Bi^{3+}$ was observed at 310 nm excitation, its wide emission spectrum has a peak maximum at 465 nm ascribed to electronic transition ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ of Bi³⁺. The recorded photoluminescence spectra of y at% Eu $^{3+}$ codoped La $_2$ Zr $_2$ O $_7$, when excited at 285 nm, the emission spectrum exhibits maximum peaks at wavelength values 615 nm, 646 nm and 665 nm which are ascribed to ${}^5D_0 \rightarrow {}^7F_2$, ${}^5D_0 \rightarrow {}^7F_3$ and ${}^5D_0 \rightarrow {}^7F_4$ transitions of Eu^{3+} respectively. The chromaticity coordinates for the optimized sample were found to be (0.519, 0.329). Sensitizing with Bi³⁺ can affect the luminescence properties of $La_2Zr_2O_7$:Eu³⁺ phosphors. With reference to the change in Eu³⁺ concentration from Y = 1, 2, 3, 4 and 5%, color tunable luminescence from blue to orange, red of $La_2Zr_2O_7:Bi^{3+},Eu^{3+}$ phosphors are observed. The lifetime decay values, energy level description and CIE chromatic color coordinates for Bi³⁺, Eu³⁺ in La₂Zr₂O₇:Bi³⁺,Eu³⁺ codoped sample was discussed. The spectral overlap between sensitizer, activator ions confirms the efficient energy transfer from Bi^{3+} to Eu^{3+} in $La_2Zr_2O_7:Bi^{3+}$, Eu^{3+} codoped sample and is via a dipole-quadruple mechanism.

SPRINGER LINK

Find a journal

Publish with us

Q Search

Home > Acta Geophysica > Article

Research Article - Atmospheric & Space Sciences | Published: 03 March 2022

Increasing pre-monsoon rain days over four stations of Kerala, India

Nandivada Umakanth, S. S. S. Kalyan, Gubbala China Satyanarayana, Rajesh Gogineni, Ayachithula Nagarjuna, Ramisetti Naveen, Kokkerapati Ramachandra Rao & Myla Chimpiri Rao [™]

Acta Geophysica 70, 963–978 (2022) Cite this article

233 Accesses | Metrics

Abstract

The climate of India varies greatly by region, as seen by wind patterns, temperature and rainfall, seasonal rhythms and the degree of wetness or dryness. During the several seasons, the weather conditions change. Changes in meteorological factors (temperature, pressure, wind direction and velocity, humidity and precipitation, etc.) cause these changes. The premonsoon season (PRMS) comprises of March, April and May months. The precipitation patterns observed in PRMS are crucial because it affects a variety of crop-related operations across the country. The lifting index (LI), K index (KI), total totals index (TTI), humidity index (HI), improved k index, improved total totals index, total precipitable water (TPW) and convective available potential energy (CAPE) are studied at four locations in Kerala during PRMS. These variables were examined on rain day (RD)'s and no rain day (NRD)'s. The four stations we chose for our investigation were Thiruvananthapuram, Kochi, Alappuzha and Kannur. The GPM IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement) daily rainfall datasets have been utilized for this analysis. Fifth-generation ECMWF atmospheric reanalysis (ERA5) daily data for the PRMS of 2021 were used to measure all rainfall-related variables. During PRMS, all metrics clearly distinguished the RD and NRD. The rise in relative humidity and observations of dew point depression indicates that there is enough moisture for convective rain. In May, there were more negative VV values than in April.

8.

Physical Chemistry Research

Home

Browse

Journal Info +

Guide for Authors

Submit Manuscript

Reviewers

Contact Us

Structural and Morphological Studies on Strontium Tin Phosphate SrSn(PO4)2 Nanopowder

Document Type : Regular Article

Authors

Y Nirmal Rajeev ¹ ; Venkatarao K ^{® 2} ; B.V. Naveen Kumar ^{® 3} ; L. Bhushan Kumar ⁴ ; Sandhya Cole [©] ^{® 4}

- ¹ Dept of Physics, Acharya Nagarjuna University, Guntur 522 510, India. Dept of Physics, V.R. Siddhartha Engineering College, Vijayawada 520 007, India
- Dept of Physics, Acharya Nagarjuna University, Guntur 522 510, India. Dept of Physics, Government Polytechnic College, Krosuru 522 410, India
 Dept of Physics, Acharya Nagarjuna University, Guntur 522 510, India. Dept of Physics, BVC College of Engineering,
- Rajahmundry 5333 102, India ⁴ Dept of Physics, Acharya Nagarjuna University, Guntur 522 510, India

10.22036/PCR.2021.300514.1953

Abstract

Strontium Tin phosphate SrSn(PO4)2 nanopowder was prepared by simple Solid State Reaction method (SSR). Structural and morphological investigations of the synthesized nanopowder were characterized by Powdered X-ray diffraction study (P-XRD). Fourier transform infrared (FT-IR) Spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy Analysis (EDS). The average crystallite size estimated from P-XRD study was around 17 nm. W-H plot method was also agreed the size of the crystallite of the prepared sample in nanoscale. FE-SEM images show agglomerates of non-uniform biscuit like nano flakes structure. Various functional groups of prepared sample exhibited phosphate related bands are confirmed by FT-IR study.

Access through your institution

Iournal of Molecular Structure

Volume 1262, 15 August 2022, 132944

Optical and antimicrobial activity of pure and Eu doped ZnSO₄·7H₂O single crystals

P. Madhuri Santhoshi ^{a b}, P. Tirupathi Rao ^{a b}, K. Vasudha ^c, Esub Basha ^a, <u>Deepti Bhargava ^d, T.K. Visweswara Rao ^a, P.S.S. Sai Kiran ^c, R.K. Ramachandra ^{a f} 오 🖼</u>

Add to Mendeley 🧠 Share 🤧 Cite

https://doi.org/10.1016/j.molstruc.2022.132944 >

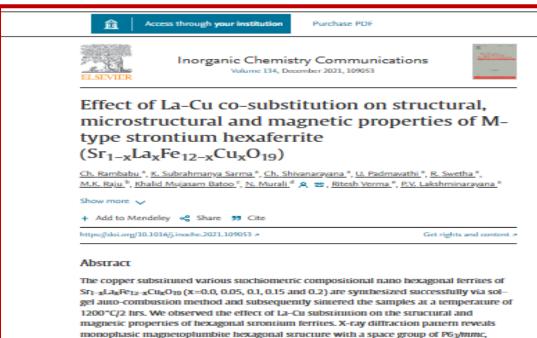
In the present study, Pure and Eu doped ZnSO4.7H2O single crystals were grown using slow evaporation and seed hanging methods respectively. The structural and optical properties of the grown crystals were studied using various techniques. X-ray diffraction studies (XRD) confirmed that the crystal belongs to the orthorhombic crystal system with space group P212121, UV-visible spectroscopy (UV-Vis)studies revealed that the shift of absorption peak towards the lower wavelength makes the crystal applicable for SHG, NLO, and Optical applications. Using Fourier transform Infrared spectroscopy (FTIR), the FTIR spectrum of the crystals was analyzed and found the peaks at 3159 cm⁻¹, 1655 cm⁻¹, 1057 cm⁻¹ which represent the OH group, H—O-H vibration, and sulfoxide bond respectively. The existence of Europium in the crystal is authenticated by Energy Dispersive Analysis of X-rays (EDAX), and the surface morphology is reported using Scanning Electron Microscope (SEM) technique. An analysis of photoluminescent (PL) spectrum validated that, with the excitation wavelength of 320nm a broad peak at 639nm was observed in the emission spectrum and the transitions from 5D_0 to 7F_J (where J=1,2&4) levels in the emission spectrum represent the Europium (Eu) ion transitions with orange-red emission. The Antimicrobial nature of the pure and Eu doped crystals was studied for two gram-positive bacteria (Staphylococcus aureus, Enterococcus Faecalis), two gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae), and two fungi (Candida, Aspergillus). For the higher concentration of the Eu doped ZnSO₄-7H₂O₅ the zone of inhibition observed was 18,17.5,16.5,16.5mm for E. coli, Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus Faecalis, and 17, 18.5 mm for Candida, Aspergillus respectively. From the antimicrobial studies, it was evident that the crystal can also act as a good antimicrobial agent as the zone of inhibition was increased with the increase in the concentration of the testing material.

10.

Physica B: Condensed Matter

Comparative study on photo and electroluminescence properties of Cu-doped

Chandresh Kumar Rastogi ^{a b} A ⊠, R.K. Mishra ^a, Satyakamal Chirauri ^c, K. Ramachandra Rao ^c, R.K. Vatsa ^{a d}, R.M. Kadam ^a, V. Sudarsan ^{a d} A ⊠


Add to Mendeley 🦂 Share https://doi.org/10.1016/j.physb.2022.414054 #

Abstract

Distinct differences observed in the alternating current powder electroluminescence (ACPEL) and photoluminescence (PL) characteristics of lab-made ZnS:Cu(1%) phosphor have been explained based on variation in donor and acceptor traps (levels) assisted electron-hole recombination upon optical and electrical excitations. The results were also compared with that of commercially available ZnS based <u>phosphor</u>. The fabricated display panel using lab-made ZnS:Cu(1%) sample exhibit bright blue colour electroluminescence. On the other hand, device fabricated using commercially available phosphor display bright cyan colour emission under similar biasing conditions. It is confirmed that the commercially available phosphor is composed of both cubic and hexagonal phases of ZnS whereas the lab-made sample is single phase cubic ZnS. The observed variation in spectral profile for commercial sample with increase in frequency of applied AC signal has been explained based on coexistence of hexagonal and cubic phases of ZnS in the sample.

12.

The copper substituted various stochiometric compositional nano hexagonal ferrites of Sr_{1-x}La_xFe_{12-x}Cu_xO₁₉ (x=0.0, 0.05, 0.1, 0.15 and 0.2) are synthesized successfully via solgel auto-combustion method and subsequently sintered the samples at a temperature of 1200°C/2 hrs. We observed the effect of La-Cu substitution on the structural and magnetic properties of hexagonal strontium ferrites. X-ray diffraction pattern reveals monophasic magnetoplumbite hexagonal structure with a space group of P6₃/mmc, chemically guge, nanocrystalline, and magnetically ordered particles with magnetic properties. The unit cell parameter (a=b) unit cell parameter is found to decrease 5.896Å to 5.857Å whereas, crystallite sizes were observed to decrease from 36.28nm to 20.07nm with the increase in doping. FTIR spectra reveals the presence of octahedral and tetrahedral vibrational modes near 400cm⁻¹ and 600cm⁻¹ respectively which confirms the formation of hexaferrite phase. Saturation magnetization (Ms) increased from 62.37emu/g to 67.27emu/g with the increase in doping.

SPRINGER LINK

Find a journa

Publish with us

Q Search

Home > Applied Physics A > Article

Published: 09 December 2021

Enhanced structural and magnetic properties of Al–Crsubstituted SrFe₁₂O₁₉ hexaferrite system

Applied Physics A 128, Article number: 26 (2022) | Cite this article

389 Accesses | 6 Citations | Metrics

Abstract

M-type Al–Cr-substituted strontium hexaferrite (SrFe $_{12-x-y}$ Al $_x$ Cr $_y$ O $_{19}$ where x = y = 0.0, 0.05, 0.1, 0.15, and 0.2) powders are synthesized successfully using sol–gel auto-combustion method. The synthesized powders were sintered at 1200 °C for 2 h, and their structural, morphological, and magnetic properties were studied using characterization techniques like XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and VSM (vibrating sample magnetometer). The XRD pattern confirmed the formation of single phase hexagonal structure with P6 $_3$ /mmc space group. The saturation magnetization is observed to decrease from 63.37 to 46.89 emu/g with the increase in dopant concentration. However, the coercivity initially decreased and then increased with increase in dopant concentration.

14.

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

Turk J Chem (2022) 46: 1972-1983 © TÜBİTAK doi:10.55730/1300-0527.3495

Adsorptive removal of crystal violet from aqueous solution by ultrasonic-assisted synthesized zirconium-2,6-naphthalenedicarboxylate metal-organic framework

Penmethsa Kiran KUMAR^{1,2}, Sunkara Satya VENI^{2,} ★

¹Department of Chemistry, Government Degree College, Chodavaram, Andhra Pradesh, India ²Department of Chemistry, Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh, India

Received: 28.05.2022

Accepted/Published Online: 23.08.2022

• Final Version: 19.12.2022

Abstract: Zirconium-2,6-naphthalenedicarboxylate metal-organic framework (Zr-NDC MOF) was prepared using ultrasound-assisted synthesis and tested for the adsorptive removal of crystal violet (CV) dye from aqueous solution. The pristine Zr-NDC was characterized using powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy, Fourier-transform infrared, elemental analysis, and dynamic light scattering techniques. The maximum percentage removal of CV dye was found to be 99.45% with an initial dye concentration of 10 mg L-1. The kinetics and adsorption isotherm models were used to investigate the removal of CV dye from aqueous solution using Zr-NDC. Langmuir adsorption isotherm model (R² = 0.9880) describes the adsorption of CV dye onto Zr-NDC and the maximum equilibrium adsorption capacity (454.2 mg g⁻¹) was achieved with the CV dye having an initial concentration of 100 mg L⁻¹. The adsorption was found to follow pseudo-second-order kinetics (R² = 0.9960) with a rate constant of 6.52×10^{-4} g mg⁻¹ min⁻¹. The effect of various parameters such as dye concentration, contact time, pH of dye solution, and MOF dose on the adsorption of dye was investigated. The study proved that the Zr-NDC is a promising adsorbent in the removal of CV dye from aqueous solution.

Key words: Adsorption, crystal violet, metal-organic framework, ultrasound-assisted, zirconium